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I. INTRODUCTION

The Defense Nuclear Agency (DNA) requires a knowledge of the mechanical
and physical properties of materials (both natural and man made) which are
used in conjunction with its underground testing program at the Nevada Test
Site. This report describes the material testing program conducted by Terra
Tek, Inc., Research and Development Division, from June 1980 to November 1981
for the Test Directorate, Field Command, DNA. Work completed between Septem-
ber 1979 and May 1980 has been included in a previous final report!.

This report is divided into three sections. The first section contains
the results of testing of several tuffs from the Nevada Test Site that are
associated with nuclear events. These tests consisted, generally, of physical
property measurements of bulk density, grain density, saturation, and air void
content, followed by uniaxial strain experiments and ultrasonic velocity mea-
surements.

The second section is the final version of a report on the mechanical and
physical properties of 2C4 grout to be used in conjunction with smail-scale
explosive tests for effects evaluation. A preliminary version of this report
has been distributed to the DNA Test Directorate as well as other interested
government agencies and contractors. Tests conducted were uniaxial strain,
triaxial compression, hydrostatic compression, strain rate, permeability and
the measurement of physical properties on samples cured to a consistent age.

The third section consists of results of measurements of the properties
of certain Coal Tar Epoxy (CTE) mixtures for stemming and containment evalua-
tion. Included are room temperature triaxial compression and uniaxial strain

results.

TButters, S.W., J.M. Gronseth and J.F. Patterson, May 1980, "Material Proper-
ties of Nevada Test Site Tuff and Grout -- Fipal Report for Period September
1978 to August 1979.
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Introduction

A series of measurements of physical properties, ultrasonic velocities,

y—

[ and mechanical properties were made on tuffaceous material from the Nevada
Test Site. The results of these tests are presented in this section where
they are listed by bore hole identification numbers. Each bore hole is treated
independently, with the graphical results of the mechanical tests forming an
appendix. In such cases where a uniaxial strain test was not performed or was
unsuccessful, only the physical properties and ultrasonic velocity data are
given. This practice is consistently followed throughout ‘*“is report. Also

included is a section that explains the procedures used for ‘termining physi-

cal properties, performing uniaxial strain tests, and m¢ ‘ring ultrasonic

velocities.
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UE12N#12

Physical properties, ultrasonic wave velocities and uniaxial strain tests
were conducted on cored material from hole UE12N#12. This material was re-
ceived from the DNA in September, 1980.

Table 1 lists physical properties, ultrasonic velocities and permanent
compaction, resulting from uniaxial strain tests to 4 kbars confining pres-
sure, as functions of drill hole depth. Summary plots of density, porosity,
air void percentage, longitudinal velocity, and permanent compaction as func-
tions of depth are shown in Figure 1.

The permanent compactions sustained in the uniaxial strain tests ranged
from 0.1% to 7.5% and the maximum stress difference ranged from 0.06 kb to 1.3
kb. There is a general correlation between this compaction and the calculated
air void volume for the majority of the tests. The reduced data from these
tests are presented as plots of volume strain as functions of mean normal
stress and confining pressure as functions of stress difference in Appendix A,
Figures Ala-Al4b.

One sample (drill hole depth of 1291 ft) was subjected to two consecutive

uniaxial strain tests. These two tests are plotted together in Figures Ab6a

and Aé6b.




Tabie 1

Physical Properties, Measured Permanent Compaction, and
Ultrasonic Velocities on Samples from UE12n#12
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U12N. 14-UG-1

Cored samples were received from hole number U12N.14-UG-1 on January 8.
1981. They were subjected to physical properties and ultrasonic wave velocity
analysis, and tested in uniaxial strain.

Table 2 presents the physical properties, ultrasonic data, and the per-
manent volume compaction resulting from the uniaxial strain tests. Graphical
representations of the density, porosity, air void percentage, longitudinal
velocity and permanent compaction as functions of sample depth are shown in
Figure 2.

The permanent compaction of these samples varied between 0.2% and 9.2%.
The range of peak stress differences was from 0.2 to 1.0 kbars.

Plots for each successful uniaxial compression test showing volume strain

versus the mean normal stress, and the stress difference versus the confining

pressure are shown in Appendix B, Figures Bla~B15b.




Table 2

Ultrasonic Velocities on Samples from Ul2n.14 Ug-1
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U12N.15UG-1, 2 and 3

Samples from drill holes UI2N.15UG-1, 2 and 3 were received in June,

1981. These cores vere subjected to uniaxial strain tests to 4 kbars confin-

ing pressure, and physical properties and ultrasonic wave velocity tests.

- Tables 3~5 list the ultrasonic, physical properties and permanent compac-

tion data for each footage from drill holes UG-1, UG-2 and UG-3, respectively.

Summary plots for seiected properties from these holes as functions of sample
footage are shown in Figures 3-5.

Plots showing volume strain as functions of mean normal stress and the
stress difference as functions of confining pressure are presented in Appendix
C, Figures Cla-Cl0b.

Permanent compactions of the samples ranged between 0.4% and 3.1%. Peak

stress differences ranged from 0.2 to 0.9 kbars.

e




Table 3

Physical Properties, Measured Permanent Compaction, and
UTtrasonic Velocities on Samples from Ul2n.15 ug-1

Drill Hole Density (gm/cc) Water Meas. Velocity
Footage As- by wet Porosity | Saturation | Calc. Air | Permanent | (km/sec)
| (m/ft) Received | Dry | Grain { Weight (X) (%) (%) Voids (%) | C . (%) [ Long [ Shear
2.8/9.2 2.06 1.76 | 2.56 14.5 31.2 95.7 1.3 0.4 2.74 |1.16
10.7/35.2 1.82 1.46 1 2.34 19.8 37.6 95.8 1.6 2.0 2.75[1.23

- 18.8/61.7 1.85 1.502.33 18.7 35.5 97.6 0.9 1.4 2.7111.15
25.5/83.5 1.86 1.5112.39 18.8 36.8 95.0 1.8 1.7 3.12]1.48
33.8/111.0 1.85 1.50 { 2.40 18.9 37.5 93.3 2.5 1.8 2.6211.09
41.8/137.2 1.85 1.82]2.32 18.0 34.6 96.2 1.3 1.9 3.5811.79
49.3/161.7 1.87 1.54 ]2.32 17.6 33.6 98.0 0.7 1.5 2.67|1.12
56.4/184.9 1.95 1.67]2.35 14.5 29.1 97.3 0.8 2.3 3.3211.70
63.2/207.4 1.96 1.64 |2.42 16.2 2.1 98.8 0.4 1.2 2.92(1.33
70.1/230.0 2.17 1.92]2.58 11.6 25.7 98.1 0.5 2.4 2.8211.17
77.2/283.5 2.09 1.85[2.46 11.5 24.8 96.9 0.8 0.6 3.31(1.59
86.6/284.0 2.50 2.49 | 2.55 0.2 2.16 23.2 1.7 --- 5.84 {3.62

Table 4
Physical Properties, Measured Permanent Compaction, and
Ultrasonic Velocities on Samples from Ul2n.15 Ug-2

rill Hole Uensity (gm/cc Water Meas. Velocity

Footage As~ by Wet Porosity | Saturation | Calc. Air |Permanent km/sec)

m/ft) Received | Dry | Grain | weight (X) (%) (%) Voids (X) [Comp. (%) | Long | Shear

1.8/5.9 2.12 1.84 | 2.61 13.4 29.7 95.8 1.3 1.5 3.03{1.47

9.3/30.5 1.86 1.60 | 2.18 13.8 26.5 97.0 0.8 1.0 3.25 1 1.57
16.4/53.7 1.89 1.5712.38 17.0 4.1 94.3 1.9 0.8 2.64 {1.16
25.4/83.2 1.92 1.5912.42 17.3 4.4 96.6 1.2 2.9 2.93|1.26
30.8/101.2 1.84 1.5112.29 17.7 33.9 96.2 1.3 1.7 3.86 |2.27
38.3/125.5 1.80 1.4212.32 29.9 38.6 97.4 1.0 3.0 2.63 11.06
44,.3/145.5 1.85 1.48 | 2.38 20.0 37.6 97.8 0.8 1.0 2.68 11.13

Table 5
Physical Properties, Measured Permanent Compaction, and
Ultrasonic Velocities on Samples from Ul2n.15 Ug-3

rill Hole Density (gm/cc water Meas. Velocity

Footage As- by Wet Porosity | Saturation | Calc. Air |Permanent km/sec)
| (m/ft) Received | D Grain | weight (X) {X) (%) Voids (X) [Comp. (%) [ Lo Shear

1.9/6.2 1.96 1.66 | 2.37 15.1 29.8 99.4 0.2 1.2 2.9811.39

7.6/25.0 1.94 1.66 12.34 14.5 29.2 97.0 0.9 0.9 2.8311.36
14.8/48.6 1.93 1.66 | 2.33 14.2 28.9 9.7 1.5 2.5 3.0111.51
23.2/76.0 1.95 1.64]2.38 15.8 31.0 99.4 0.2 1.4 2.8711.39
37.5/123.1 1.93 1.60 1 2.40 16.9 33.2 98.3 0.6 3.1 3.19{1.64
45.0/147.7 1.93 1.63 | 2.36 15.4 30.8 96.5 1.1 1.7 2.46 11.02
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Testing Procedures

Sample Handling and Preparation Techniques - Sampies of tuff as-received

have been wrapped in foil and sealed in beeswax in the field. Density and
moisture content were determined from small pieces (i.e. ~50 cm3) chipped from
the core. Mechanical test specimens were cut to 2.5 inch (6.4 cm) length
using a diamond cut-off saw and water coolant. The ends were subsequently
ground to be parallel to within 0.001 inches (0.0025 cm). After cutting and
grinding, specimens were wrapped in a urethane jacket and mounted to steel

endcaps. The jacket was then sealed to the endcaps with rubber tape and wire.

Physical Properties Determination - The "as-received" density was deter-

mined by weighing the chipped-off test specimen, coating it with wax, and
measuring its volume using mercury displacement. The same specimen was then
stripped of wax, weighed, and dried in an oven at 105°C far 24 hours. From
the dried sample weight, the percentage water by wet weight (¥ H,0) was deter-
mined. The piece was then crushed and pulverized (100 mesh) to determine
grain density. Grain volume was measured by water immersion and gas evacua-
tion. A1l weights were determined to 10.05 percent accuracy; volumes are
accurate to $1.0 percent.

Nomenclature and equations used for the measured and calculated physical

properties are as follows:

Nomenclature
*pw = in-situ bulk density (wet or "as-received” density)(gm/cm3)
*pg = grain density (density of solids)(gm/cm®)

= i 3
szo density of water (gm/cm3)

*w = moisture content (percent by wet weight)

*Measured parameters.




_.1
Py = dry bulk density after oven drying (gm/cm3)
1, = total porosity (percent of total rock volume)
Sr = degree of saturation (percent of void volume)
Vav = air void content (percent of total rock volume)
Equations
= -
P =Py 1~ 155
Pyq
n, = 100 x 1 - —
p
g j
S. =100 X by
- T, X Py o)
r Mt X Py,0

4 Vav = 100 x [1 + Py (1- l/pg) - pw]

Mechanical Tests - A1l mechanical tests were conducted using a servo-con-

trolled hydraulic press in combination with a servo-controlled intensifier as
shown in Figures 6 and 7, respectively. A variety of different tests are
possible with this machine, including hydrostatic and triaxial compression and
uniaxial strain. The upper loading actuator has a 130,000 pound capacity and

the pressure vessel is capable of 60,000 pounds per square inch, or about 4

kilobars (400 MPa).

Data are recorded using X-Y recorders. Signal conditioning equipment and
calibration methods provide an accuracy of +2% on pressure and stress measure-

ments.

Strain Measurements - Strains are measured using cantilever arms inside

the pressure vessel. A schematic diagram of a mechanical test specimen with
axial and transverse strain cantilevers is shown in Figure 8. A photograph of

a test specimen is shown in Figure 9.
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Figure 6.

Figure 7. 4 Kbar Pressure Intensifier.
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Figure 8. Schematic Drawing of a Specimen with the Axial and Transverse
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Figure 9. Test Sampie with Axial and Transverse Strain-measurement Cantilevers.




Data Presentation - Data are plotted as either hydrostatic pressure or

mean normal stress versus volume change, stress difference versus individual
strains, or stress difference versus confining pressure where compressive
stresses and shortening strains are positive. Here o,, 0,, 03 and &,, €5, €3
refer to principal stresses and strains, respectively. For all tests, o, and
e, refer to axial direction, and o, = g3 are the lateral stresses applied by
the liquid pressure. The term e,, which for an isotropic material is assumed
equal to g5, refers to transverse strain. Other terms frequently used in the

text are defined as follows:

(g *+ 05 *+ 03)

Mean normal stress

Volume strain T g, +tEg *Eg

g, (for uniaxial strain loading)

Stress difference g, = O3

Confining pressure = g4

Ultrasonic Velocities - The through-transmission technique is employed to

obtain ultrasonic velocity data; the system used to obtain the data is shown
schematically in Figure 10. The main advantage of this technique is the high
accuracy with which wave transit time can be measured. The received signal is
viewed (on the oscilloscope) alternately with the signal from the variable
frequency synthesizer after it has passed through a shaper. The shape of the
latter is adjusted for an exact match of the initial wave arriving through the
specimen. The pulse that excites the transmitting transducer is next viewed
and its shape matched to that of the comparison wave. Once this is done, the
frequency of the synthesizer is adjusted for an exact number of cycles between

the transmitted and received waves. The number of cycles divided by the

frequency is the transit time through the specimen.
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Figure 10. Schematic of Ultrasonic Velocity Measuring Equipment.

The ultrasonic longitudinal and shear wave transit times are measured
and, along with the specimen length and density, can be used to calculate the

apparent Poisson's ratio, v, and Young's modulus, E, as follows:

2.y - 2
— v 1) 2 (v s) V, = Tongitudinal velocity
v = 2_2 ]
2 (V 1oV S)
VS = shear velocity
4
= JpV2 (V2. -= y2 2 . y2
E = 3pV s v 173 Vv 5)/(V 1 v S)

where p is the specimen density.




APPENDIX A - UE12N#12

UNIAXIAL COMPRESSION DATA (36 TESTS)
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APPENDIX B - U12N.14-UG-1

UNTAXIAL COMPRESSION DATA (45 TESTS)
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NOMENCLATURE

The pressure of the confining fluid in a hydrostatic or triaxial
test cell, bars

Pore fluid pressure, bars

degree of saturation (percent by void volume)
air void content (percent by total volume)
moisture content (percent by total weight)
Volume strain, % strain

Strain rate, in/in/sec

Principle strain

total porosity (percent by total volume)
dry bulk density after oven drying (gm/cm3)
Grain density (density of solids)(gm/cm3)

Density of water (gm/cm3)

In-situ bulk density (wet or "as-received" density)(gm/cm3)

Principle stresses, bars




1. INTRODUCTION

The Defense Nuclear Agency (DNA) requires a knowledge of the mechanical
and physical properties of materials (both natural and man-made) which are
used in conjunction with its underground testing program at the Nevada Test
Site. This report describes the materials testing program conducted by Terra
Tek on 2C-4 grout from August 1980 through April 1981. The contract number
under which this work was done was DNA-001-81-C-0037.

The program goal was to conduct various mechanical tests on a grout that
was formulated and treated to have extremely consistent mechanical and physi-
cal properties. The test program addressed curing, strain rate effects,
physical and mechanical properties and permeability. The results are being
used to assist in further general development and verification of computer
codes that are used in nuciear bliast effects analysis, and specifically to
assist in the analysis of the grout sphere explosive tests being conducted by
the Stanford Research Institute.

Many people in addition to Terra Tek and DNA Test Directorate Staffs have
contributed to the planning and execution of this work. Included are Russ
Duff at Systems Science and Software, Alex Florence at Stanford Research
Institute, Carl Keller at DNA Field Command Headquarters, Albuquerque, New
Mexico and Dan Patch at Pacifica Technology. We thank them all.

Ninety-seven successful tests were run on the grout (aside from physical
property measurements). They can be grouped into the general categories of
uniaxial strain tests, strain rate tests, hydrostatic compression tests,

triaxial compression tests, permeability measurements, special drainage test,

and physical property measurements.




The overall test matrix is shown in Table 1. In each category, we indi-

cate the number of tests conducted of each test type or the number of tests
conducted at each condition. Where tests followed one another on the same

samples, it is indicated by arrows.




9t 431531 SIVKYS
SIN1YIA08d WITSAHd

1 1531 39VNIVMO TW1J3dS

4 pa24) S3B43S

H4 ps3isaup

SUOTI1PUO) 98]

123443 NITDAI SSIULS ONV
133443 3UNSSIW ONINI INOD
'SINIWINNSYIN ALIVIBVINYIY

paujeag
pauyeapun

o~ -
o o
o~ =
o~
~ -
&~ -

$31397 ujeuys
tegxejun a8y

—Q@ d4 = d) parewdefupn

'Ilv@ 1 qY ¢ = 0 03 pessaays
Kisnojaaad ynq pauyespupn

o

o

11 1 paujeapun

1 s.eq 00§ = d4 ©

% % 6900 o0 SUO|I1PUO) 159]

1

1

T 11 1 sieq 01 = dg o
1

'sanssIsg Ju0)

S1S31 NOISS3INIWOD TVIXVINL

|

psuieapupn o

d4 = dy paaaxoefun o
L @ saeq 005 dd
——————— @ sieq 01 d4

P3| 1047U0) BuNSSBIY 3104 O

SUOLIIPUO) ISI|

suven ¢ = o oL
S1531 NOTSSINAWOD ITLVISOUOAH

‘Buj1se3 Jo duBnbas Byl MIFIIPU| SMOLIY,,
SIPRYIS JAUNO U} PIIINPUO),

| T (91 60 = ©0 ‘peujeapupn)
Uo|sSSIIdwo) (eyXeLY)

£ « € (pauieapun)
ugesyg (eyxejun

uo§SS3ICWO) pau|JuodUn

ﬂﬂh 158)

AONLS 3ivy NIVEIS

payrsabiajey . yse)
222 2 2 sunjeasdus] wOOY . 1509

(pe12£) pue paujrapun)
uteaIg (TyxeLUN

9% 9z 12 81 9L W1 £ SAK] 389
Ise) 4ay owi)

AONLS S133443 IMIL INIEND
S1S3L NIVHLS TVIXVINN

$3)|ddy aaaayIjym ‘uo}IPUSC) Y203 1T PIIINPUO) S1SB| JO JaqEny
sy} 40 adA} 1581 yoeJ O PIIINPUO) $1SR| jo saquny Y)Y Buymoys

Xj43eH 159) WN0SD H)2
t stqvry




81

031531 SI1dWVS
$31143404d WIISAH

1531 JOWNIVH0 TV1D3dS

pe24) ssess

paisaun

SuoIIpuo) 1394

133343 ONITDAD SSIULS ONV
133443 ¥NSSIMd ININIINOD
‘SANINIUNSYIN ALIVIGVINYIM

T 11t U1t 1 paujeaqg
Z z T 2 e z paujvapupn
$1597 UjRIYS
Leixeiun Jayyy o
—@ dd = d3 pazaxoefun o
ll'@ 1 qy ¥ = 0 0y passasls
ALsnojasad anq paujedpun o
T 1111 1 paugespun o
~| |-@ 11 s4eq 0S = 6d ©
~ ~@® ti1uv o1 saeq T = d4 ©
¥ 21 % % 6900 0 SuGL3{puo) 3Isa)
qy ‘ainssasy ‘Juo)
$1S31 NOISSINIWOD TYIXVINL
I||® pauteapun ©
||||@ d4 = d) psrayoefupn o
||l|||@ sieq 005 dy
[.I"ﬂ]@ saeq Q1 dg

P211041U0) 3INSSBU4 3404 ©

su03fpucy jsaj

syvan v = S0 01 .
$1531 NOISSIUIWOI I11VISONOAM

‘6uL1593 40 @duanbas BYI 1EDIPU| SMOLUY,,
Sa|pAIs JAUT0 V! pIIINPUO),

T o« 1 (a1 50 = o ‘pauiepun)
UO|SSIICWO) |ByXRLAY

€ - 3 (poutespun)
ules1s (eIXRLUN

vo|ssasdwo) PaULJUOIUN

dr 353

Jas/ul/U}) 23ey ULRIAS

AGNLS 3LV¥ NIVELS

pajesabiajay « 350)
2 2 2 F A 4 anesadus) WOON « 15€)

(peid>h) pue peuiespun)
uiRIIg (PLXELUn

95 92 12 8] 9] ¥ { #d%) ase]
1se) Jdy Wi

AONLS S133443 INIL ONIUND
S1S31 NIVHLS WIXVIND

so)ddy JRAYIIUA ‘UOJIIPUO) YOrI IT PAIONPUD) S133) jO J3GEny
gy 40 3dA) 1S3] YOR] SO PAIINPUO) SISI| JO JAgENN W) Buymoyg

LITRL IR LITURLLEL B T4

b siqeg




2. EXPERIMENTAL PROCEDURES

This section describes procedures ranging from sample preparation to
testing. A general outline is given which is then followed by more detailed
descriptions of each test type. In order to assure uniform 2C-4 grout proper-
ties during the extended time required to complete the test program, it was
necessary to establish a procedure to equalize the state of cure in all sam-
ples. The grout samples were poured and initially cured at the Stanford
Research Institute (SRI). On the seventh day of cure, the samples, submerged
in water, were shipped to Terra Tek; where on the 14th day of cure they were
refrigerated at 5°C until they were tested. Verification tests were per-
formed, and it was determined that the refrigeration process had indeed re-
tarded any further aging. All samples were thereafter considered to be at
identical states of cure.

The following tests were successfully conducted (see Table 1):

a. Physical Properties (18 tests)

b. Uniaxial Strain (25 tests)

¢. Hydrostatic Compression (7 tests)

d. Triaxial Compression (38 tests)

e. Permeability Measurements (4 tests)

f. Uniaxial and Triaxial Strain Rate (22 tests)

g. Special Drainage Test (1 Test)

A1l of these procedures have been described in previous papers and re-
ports [Refs. 1-4]; however, condensed descriptions are included here for
clarity and completeness.

Mechanical compression tests, i.e., b, ¢, d, f and g of the above, were

conducted on right circular cylinders of 2C-4 grout 2 inches in diameter by




2.5 inches long. The sample ends were cut and nround to be flat and parallel
within 0.001 inches. Samples were isolated from the pressure vessel fluid
environment by jacketing with a polyurethane sheet 0.010 inches thick. The
jacket was sealed at the sample ends by lock wire which was securely tightened
against hardened steel end caps.

A triaxial servo-controlled testing machine was used to subject the
samples to the desired stress states at controlled strain rates. Axial and
lateral strains were measured using strain-gaged cantilever beam transducers
with an estimated accuracy of 0.025% strain. Stress difference was determined
with a strain-gaged load cell to an accuracy of +20 bars and confining stress
and pore fluid pressures were measured using pressure transducers with accur-

acies of +40 bars and +5 bars, respectively.

2.1 Physical Properties Measurements

To check the consistency and adequacy of the grout preparation and hand-
ling, physical property measurements were made. Wet density, grain density,
and water content were measured. From these measurements dry density, poros-
ity, saturation and air voids were calculated. Fformulas used for calculation
are given in Appendix A.

Wet bulk density was measured using a water immersion technique. The

sample was weighed, then sealed with bees wax of known density. The sample
was then weighed while submerged in distilled water. The sample weight in
air, the sample bouyant weight, and the density of the water and bees wax were
used to calculate the sample volume. The weighti and the sample volume were
then used to calcuiate density.

Water content was determined by drying an. weighing the dried sample.

The difference between the as-received weight -~.. the dry weight divided by

the as-received weight yields water content by wet weigh
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Grain density was measured by a water pycnometer technique. Finely

crushed grout samples were placed into a volume-calibrated flask. The flask
was filled with water to a precise level, the air evacuated, and the flask
weighed. Knowing the tare weight of the flask, density of water, the precise
volume of the grain-water mixture, and the total weight, the grain density was

calculated.

2.2 \Uniaxial Strain Tests

Uniaxial strain tests were conducted to determine permanent compaction,
following a strain path corresponding to the initial phase of explosive load-
ing. These tests were also used to verify that the 2C-4 grout properties were
consistent, and therefore confirm that the refrigeration technique did suffi-
ciently slow tﬁe curing process. To do this, these experiments were conducted
on samples of different cure age§{

Also, to ascertain the damage done to the grout by cyclic loading, two
cycles of uniaxial strain were conducted on each sample.

In the uniaxial strain tests the samples were stressed axiaily at a con-
stant axial strain rate of approximately 10-4 sec-! while the confining pres-
sure was controlled such that the lateral strain was kept as near to zero as
possible. These tes*s were conducted until the confining pressure reached 4
kbars. Data recorded were axial load, confining pressure, axial strain and

lateral strain.

2.3 Hydrostatic Compression Tests

Hydrostatic compression tests were conducted to provide the pressure
versus volume strain compression data for 2C-4 grout up to a confining pres-

sure of 4 kbars. Three types of hydrostatic compression tests were conducted.

They were:
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Semi-Drained* (pore pressure controlled) - Drained experiments provide a

measure of the pore-volume response of the material. For these tests confin-
ing pressure and pore pressure were initially increased together at an approx-
imately equal rate until the desired test pore pressure was reached. From
this point, confining pressure was increased while pore pressure was held
constant. End caps for the drained experiments were fitted with drain ports
that connected directly to a pore fluid volume measurement system that was
located outside the triaxial cell. With this system the pore pressure was
maintained and the fluid volume fxuded from the rock was measured. Estimated
accuracy of the fluid volume measurement is #0.05 ml. The volume of exuded
pore fluid was measured for comparison with strain transducer data. Confining
pressure was cycled back to approximately zero effective stress after attain-
ing 1.3 kbars and 2.7 kbars confining pressure, to obtain unloading data.
However, before reducing confining pressure, the pore fluid was allowed to
drain at constant confining pressure in hopes of achieving stable conditions.
(Pore fluid drainage is time-dependent due to the characteristics of fluid
flow through a porous medium. Porous flow, and the small permeability of
these specimens, caused rather large characteristic times for drainage.)
Attempts at stabilization were stopped when exuded pore fluid amounts were
small, usually after about 5 minutes, however, this time was probably not
sufficient to achieve full drainage.

Unjacketed - Unjacketed tests are a measure of grain compression. For
these experiments the polyurethane jacket was perforated to allow the pore
fluid pressure to equilibrate with the confining fluid pressure. Confining

pressure was increased to 4 kbars at a rate of approximately 7 bars/sec.

*The term semi-drained is used because full drainage was not achieved for the
tests described here. See Sections 3.3, 3.5 and 3.7 for a full explanation.




Undrained - Undrained tests are a simulant of material-pore-fluid re-
sponse under extremely rapid-loading conditions. These tests were conducted
to 4 kbars confining pressure. Loading rate was approximately 7 bars/sec.
Confining pressure was cycled back to zero when it reached approximately 1.3

kbars and 2.7 kbars.

2.4 Triaxial Compression Tests

Triaxial compression tests were conducted to determine the failure
strength of 2C-4 grout under both drained and undrained conditions and also in
some cases, to determine the sample alterations introduced by previous load
cycling.

Samples were tested in a triaxial cell at constant confining pressure.
Axial stress was applied via the machine loading piston at a load rate result-
ing in a strain rate of approximately 10-% sec-1. Axial and lateral strains,
load and confining pressure were measured. ATl tests were conducted to
approximately 10% axial strain.

A1) drained tests were conducted using the pore fluid system explained in
the Section 2.3. Pore pressure was held constant and exuded pore fluid volume
was measured. The same comment regarding full drainage as mentioned in the
previous section applies here.

For undrained tests, in some instances, the shear stress was cycled to
zero before failure to obtain unloading stiffness.

Unjacketed triaxial compression tests were conducted with a perforated
jacket and loaded to failure.

For some of the triaxial compression tests, samples were pre-tested. Two
types of pre-tests were done: 1) hydrostatic compression to 4 kb followed by

decompression to confining pressure at which the triaxial test was conducted,

and 2) two uniaxial strain tests to 4 kbars (the samples used for these tests
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were the same samples used to verify the refrigeration technique described

above).

2.5 Permeability Measurements

The mechanical properties determined by the tests described above, in
cases where some drainage was allowed to occur, depend on the fluid movement
in the sample and therefore on the permeability of the sample. To determine
the pertinent permeability values, several permeability tests were done, both
on untested material and on pre-tested material.

On previously untested material, permeability measurements were made on
saturated samples that were 2 inches in diameter by 0.5 inches long. Then, a
sample cut contiguously to the above sample, but 2 inches in diameter by 2.5
inches long, was tested to 4 kb in uniaxial strain. Finally, a wafer 0.5
inches 1long was cut from the uniaxially tested sample. This wafer was used
for the final permeability measurement.

Permeability was measured by a transient technique using distilled water.
The jacketed sample was connected to two known volumes. A pressure step, AP,
was introduced into one of the volumes. It diminished as fluid flowed into
the sample, and from the time-pressure decay curve, and knowledge of fluid
compressibility, system volumes and sample geometry, permeability was calcu-
lated. The method of calculation used is given in Ref. 2. Permeability

measurement resolution is approximately 0.1 microdarcy.

2.6 Strain Rate Tests

Since drainage-dependent mechanical properties depend on time-dependent
fluid movement within the sample, variation in those properties might be ex-
pected with varying strain rates. Also, some true material-caused strain rate

dependence has been observed for strain rates between 10-5 and 10-! sec-! in




rocks [Ref. 5]. To determine the magnitude of strain rate effects on strength,
unconfined compression, uniaxial strain and confined triaxial compression,
tests were conducted at various strain rates in the 10-5 to 10-! sec-! regime.
These tests were generally conducted as described in the foregoing sections
except for the variation in strain rate. Strain rates reported are accurate

within $10% at 10-! sec-! and within 1% at all other rates.

2.7 Sgecial Drainage Test

To aid in determining the true drained response of 2C-4 grout, a special
drainage test was performed. This test was similar to the "semi-drained"
hydrostatic compression tests to 4 kbars as described in Section 2.3, however,
it differed from the previous tests in that longer pore pressure equilibration
times were allowed (30 minutes as compared to approximately 5-6 minutes for
the semi-drained tests) after each confining pressure increase and in that the
pore fluid volume exuded as a function of time for each equilibration period
was recorded. Also, no triaxial compression test was conducted after the
first hydrostatic compression. Instead, the confining pressure was reduced to
0.3 kbars and pore fluid drainage was allowed for approximately 48 hours.

Then subsequent hydrostatic compression cycles to a maximum of 4 kbars were

conducted again using the same procedure.




3. RESULTS

Three batches of 2C-4 grout, sealed to maintain wetness, were sent to
- Terra Tek. Each batch, labeled 1, 2, 3 throughout this report, consisted of

26 tubes of grout that were 2 inches in diameter by 12 inches long. Each tube

was numbered 1 through 26. (In the mixing procedure at SRI, tube 1 was vi-
brated first, immediately after casting, and tube 26 was vibrated last,
approximately 45 minutes after casting.) The labeling system includes batch
and tube numbers. For example, 2-15 is a sample taken from batch 2, tube 15.

If two samples were taken from the same tube, they were labeled "a" and "b".

3.1 Physical Properties

Physical properties measurements were made on three tubes from each
batch: one that was vibrated immediately (i.e. low tube number), one that was
vibrated after approximately 20 minutes, and one that was vibrated after 40
minutes. Two full suites (labeled "a" and "b") of physical property tests
were conducted on each tube. The results are shown in Table 1.

Consistency of the physical properties was excellent among all three
batches. The casting and handling of the grout were concluded to be adequate

for the testing program.

3.2 Uniaxial Strain Tests

Samples were tested in uniaxial strain at ages of 7, 14, 21, 28 and 56
days (2 tests each age). Upon the 14th day of cure, however, a group of
samples for uniaxial strain were refrigerated (while submerged in water) at
5°C (40°F). These refrigerated samples were then tested in uniaxial strain at
refrigerated ages of 16, 18, 21, 28 and 56 days (3 tests at each age) for

comparison with unrefrigerated samples. All tests in this part of the test




Table 2
2C4 Grout

Physical Properties

- Density (gm/cc) Water by Calcylated

Sample [ As- Wet Weight|Porosity|{Saturation|Air Voids

| Designation|Received ]Dry [Grain{ (%) (X) . ¢)) _(%
1-3a 2.20 |1.81] 2.97| 17.6 39.0 99.1 0.3
1-3b 2.20 1.81) 2.97| 17.8 39.2 98.8 0.5
1-12a 2.19 |1.80| 2.99| 17.7 39.7 97.7 0.9
1-12b 2.18 {1.80( 2.98| 17.7 39.8 97.5 1.0
1-23a 2.19 [1.80] 2.95{ 17.7 38.8 99.8 0.1
1-23b 2.20 |1.84) 2.94) 16.4 37.5 9.4 1.3
2-3a 2.19 |1.80) 2.99| 17.7 39.7 97.9 0.8
2-3b 2.19 {1.80| 3.00| 17.8 39.9 97.5 1.0 '
2-12a 2.21 |1.83} 2.98} 17.2 38.6 98.3 0.6
2-12b 2.24 11.87| 2.98] 16.5 37.2 99.1 0.3
2-25a 2.20 {1.83| 2.96( 16.9 38.3 97.0 1.1
2-25b 2.20 |1.81] 2.98] 17.5 39.2 98.1 0.7
3-2a 2.21 |1.82] 2.99| 17.4 39.1 98.4 0.6
3-2b 2.22 ]1.85f 3.00{ 16.8 38.4 97.0 1.1
3-12a 2.18 J1.79} 2.98] 17.8 39.7 97.8 0.9
3-12b 2.18 J1.79| 2.97] 17.8 39.7 97.6 0.9
3-24a 2.20 }1.82] 2.98| 17.4 39.0 98.5 0.6
3-24b 2.19 J1.801) 2.97} 17.7 39.3 98.6 0.6 /

program were undrained and cycled. The number of tests of each type are given
in Table 2. Results are summarized in Figures 1 through 7. Detailed results
are given in Appendix B. The prime test result used for comparison is perman-
ent compaction, given as percent volume strain remaining following one uni-
axial strain load-unload cycle.

Table 3

Uniaxial Strain Tests - Curing Time Effects
Showing Number of Tests

Time After Cast (Days
Tast Type 7 114 116 18 |21 128 |56
Room Temperature 2] 2 212} 2
Refrigerated 3131 313] 3
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Figure 1. Measured Permanent Compaction After 1lst 1-D Cycle versus

Time - Refrigerated.
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Figure 3. Stress Difference at o3 = 4 kb on First 1-D Cycle versus Curing
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Figure 6. Uniaxial Strain - 28th Day.
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Figure 7. Uniaxial Strain - 56th Day.

Room-temperature cured sampies show a definite curing-time effect. This
is shown in Figure 2. A decrease in permanent compaction is seen as a func-
tion of curing time. A Jleast-squares line with a slope of -0.03% volume
strain/day fits the data. The decrease in permanent compaction with curing
time indicates a strengthening caused by curing. In comparison, results for
samples refrigerated on the 14th day, shown in Figure 1, indicate little
effect.

For the same tests, no significant change is seen in maximum stress dif-
ference (Figures 3 and 4) sustained during the first cycle at ultimate confin-
ing pressures by the refrigerated and room temperature samples as the cure
proceeds. However, if the averaged shear stress versus confining pressure
plots, Figures 5 through 7, from samples tested at 56, 28, and 21 days are
compared, one finds that the room temperature cured samples sustain higher
stress differences than the refrigerated samples on the lst and 2nd cycles at
confining pressures below 1 kbar. This further confirms that the refrigerated

samples do not gain strength with age as compared to the room temperature-

cured samples.




Results of the uniaxial strain tests indicate, therefore, that refrig-
erating the samples did sufficiently slow the curing process such that the
changes in material properties associated with curing were small as compared
to the normal data variation. Thus, a set of material samples with uniform

properties was available for the entire extended test program.

3.3 Hydrostatic Compression Tests

Semi~drained (with pore pressure, Pp, equal to 10 bars and 500 bars and
with measurement of fluid loss), undrained, and unjécketed hydrostatic com-
pression tests were conducted to 4 kbar confining pressure. Table 3 gives the
number of tests conducted in each category.

Table 4

Hydrostatic Compression Tests
Showing Number of Tests

Test Type No. of Tests
Pore Pressure-Controlled
i) P_ = 10 bars*
ii) Pg = 500 bars*

njacketed Pc = Pp

NN =D

Undrained

*Measured exuded fluid

Results from the hydrostatic compression tests are summarized in Figure
8. Also presented, for reference now, and to be discussed late», are the
compressibility of water [Ref. 6], the compressibility of a sand (Lapis Lustre
[Ref. 3]), and an estimate of the grain compressibility of 2C-4 grout based on
the compressibility of an equivalent mixture of hydrating gypsum and sand.
Individual semi-drained, undrained, and unjacketed hydrostatic compres-

sion results are given in Figures 9 through 15 respectively.
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Tables 4 and 5 give a comparison of the volume strains calculated from

the strain transducer data and the volume strains calculated from the exuded
pore fluid data during semi-drained tests. The test with pore pressures of 10
bars (Figure 9) and 500 bars (Figure 11) differ somewhat in how the pore fluid
volume change is measured and presented. For the 10 bar test, pore fluid
volume data starts at low pressure while for the 500 bar test data starts at
~500 bars. This is done because the confining pressure must be maintained
slightly larger than pore pressure at all times to prevent jacket rupture.
For the 500 bar test, pore pressure was continuously increased until somewhat
greater than 500 bars confining pressure was reached. Therefore, constant
pore pressure drainage information is not available until the pore pressure
equaled approximately 500 bars.

For help in comparing these data, the following comments are offered:
the unjacketed sample (see Figure 8) exhibited the stiffest response during
the hydrostatic compression test. The undrained hydrostatic test results are
bounded by the unjacketed test results and undrained tests on Lapis Lustre
sand (which was unconsolidated and had a porosity of approximately 40%). One
would expect the undrained behavior of the cemented 2C-4 grout to lie between
these two bounds, as it does. The stiffest possible response would correspond
approximately to one minus porosity times stiffness of the grains (unjacketed
test) and the most compliant undrained response would correspond to that of an
unconsolidated, uncemented material composed of the same material and having
the same porosity (sand test).

Exuded Pore Fluid Results - For the 10 bar test, as seen in Table 4 and

Figure 9, the final total strain as measured by exuded pore fluid agrees rela-
tively well with the strain transducer results. Note, however, that during
the test, the fluid volume Tags the transducer volume, as would be expected

for time-dependent drainage.

98




TABLE §
HYDROSTATIC/TRIAXIAL COMPRESSION
DNA 2C-4 GROUT: 8/6/80 POUR
PORE PRESSURE = 10 BARS

SAMPLE 2-78
v Mean |lncremental® Volume | Accumulated Incremental™ Volume ‘Accuaulated
Stress Strain, X Total Strain Strain, % Total Strain
Interval kb (by water volume from pt. D (by strain transducers) | from pt. 0
A-8 0 + .0
B-C** 1.2 +.27 +1.28
c-D - 1.3 +.63 0.90 + .19 1.43
D-£ 0.5 +.03 0.93 - .39 1.04
E-F 0 0 0.93 - .38 0.66
F-G 2.6 +.16 1.09 +1.07 1.73
G-H 2.6 +.55 1.64 + .20 1.93 ;‘
H-1 0.8 +.05 1.69 - .35 1.58
I-J 1] ] 1.89 - .39 1.19
J=K 4.0 +.16 1.85 + .88 2.07
K-t 4.0 +.16 2.01 + .08 2.15
L-M 4.1 +.93 2.94 + .69 2.84
*Positive means volume compaction.
*%point from which the pore pressure was held constant and from which fluid
volume measurements were made.
TABLE 6
HYDROSTATIC/TRIAXIAL COMPRESSION
DONA 2C-4 GROUT: 8/6/80 POUR
PORE PRESSURE = 500 BARS
SAMPLE 1-58
an | Incremental® Volume] AccumuTated Incremental® Volume Accumuiated [ Accumulated
Stress Strain, ¥ Total Strain Strain, X Total Strain | Total Strain
Interval kb {by water volume) | from pt. D (by strain transducers)| from pt. D from pt. A
A~8 0.3 +.33
8 0.3 0 0.33
8-C 0.5 +.15 0.48
c 0.5 0 0.48
C-0** 1.3 +.38 +.56 1.04
D-€ 1.3 +.27 0.65 +.11 0.67 1.15
E-F 0.9 0 0.65 -.15 0.52 1.00
F-6 0.5 -.0% 0.60 -.18 0.34 0.82
G-H 2.7 +.33 0.93 +.85 1.19 1.67
H-1 2.7 +. 14 1.07 +.07 1.26 1.74
I-J 1.4 +.05 1.12 -.29 0.97 1.45
J=K 0.5 0 1.12 -.33 0.64 1.12
K-L 4.0 +.27 1.39 +.75 1.39 1.87
L-M 4.0 +.41 1.80 +.15 1.54 2.02
M-N 4.1 +.88 2.68 +.36 1.90 2.38
-
*Positive means volume compaction.
. **point from which the pore pressure was held constant and from which fluid
5 volume measurements were made.
b4
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For the 500 bar test, as seen from Table 5 and Figure 11, the volume
strain interpreted from measurements of the exuded pore fluid taken from point
D is larger than the volume strain measured by strain transducers taken from
point D. During hydrostatic compression loading to 500 bars, water was com-
pressed in the pore pressure generator to establish 500 bars pore pressure.
As will be shown later, 2C-4 grout is very impermeable and therefore required
considerable equilibration time. It is therefore possible that during the
hydrostatic compression to 500 bars confining pressure less water came out of
the sample than should have for complete drainage. This would have resulted
in more volume change of the pressure generator than necessary to establish
500 bars external pore pressure had equilibrium been maintained. In turn,
generator volume would later be increased even more as further drainage
occurred. This possibility is supported if one totals the transducer strain
from point A, the onset of testing, instead of from point D. The result is
2.38%, which agrees better with the 2.68% strain as measured by the exuded
pore fluid for the total test than it does with the value from point D.

A1l of the above information indicates that drainage time is a very
important parameter in these tests. The measured permeabilities (given later
in Section 3.5) were often less than 1 udarcy. Such low permeabilities would
cause equilibration times for samples of these dimensions to be greater than 1
hour. For these, tests times of only 5 minutes were allowed. Therefore, it
is likely that the tests described in this section were not fully drained, but

instead "semi-drained". A special drainage test is described in Section 3.7.

3.4 Triaxial Compression Tests

Ten semi-drained tests were conducted at confining pressures from 0.069
kb to 4 kbar and at pore pressures equal to either 10 or 500 bars. Seven

undrained tests were conducted at confining pressures between 0 and 4 kbars
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confining stress and thirteen undrained and semi-drained triaxial compression
experiments were conducted oﬁ samples that had been pre-tested. Two unjack-
eted experiments were conducted at a confining pressure of 4 kbars. Table 6
shows in detail the number of tests conducted of each experiment type.

Strength results for the foregoing tests are summarized in Figures 16
through 20. Figure 21 compares uniaxial strain test data on un-tested and
cycled samples with triaxial compression data on untested and cycled samples.
Figure 22 compares stress~strain data for the different types of triaxial
tests at 1/2 kbar and Figure 23 compares undrained triaxial compression data
at different confining pressures. The individual test data for all tests con-
ducted in this section are given in Appendix C.

Table 7

Triaxial Compression Tests Showing Number of Tests

Confining Pressure, kb
Test Type 0]0.06911/4]1/21121]4
Drained
i) P_ = 10 bars 1 1 1 ]1 2
ii) Pg = 500 bars 1 {1 2
Undrained 1 1 1 1 (1111
Pre-Tested
i) Undrained hydrostatic 11
compression
i1) Undrained uniaxial strain 2 2 2 |2 2
iii1) Drained uniaxial strain 1 1 111 1

Grout strength below 2 kbars confining stress is significantly reduced by
pre-testing the samples. As seen from Figures 19, 20 and 21 this is true
regardless if the test is drained or undrained or how the pre-testing was
done, whether in a hydrostatic compression test or a uniaxial strain test.
Furthermore, pre-testing reduced the stress difference sustained in uniaxial

strain as shown in Figure 21. At the onset of testing the undrained uniaxial
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strain data from untested samples lies slightly below the triaxial data for
untested samples, as expected. 0Ouring the 2nd cycle the 1-D strain test data
suggests weakening of the material. When compared to the triaxial compression
results on pre-tested samples the stress sustained during the uniaxial strain
test is found, as before and as expected, to be slightly less for confining
pressures less than 2 kbars. Above 2 kbars all the data coincide (i.e.,
average stress difference equals approximately 0.25 kbars).

Grout strengths for the previously untested samples are not stror
dependent on the test type, i.e. semi-drained, undrained or unjacketed. 2
unjacketed tests are perhaps slightly weaker at 4 kbars (Figure 18).

Perhaps an estimate of true drained strength at 4 kb confining stres:
found from the data in Figure 19, presenting drained triaxial compression
results on samples that have been pre-tested. Because these samples are dam-
aged and have greater permeability (see the section on permeability results),
one would expect them to drain more completely. These are by far the strongest
samples at 4 kb confining stress. It might be reasonable to assume that a
previously untested sampie that was allowed to drain completely might be as
strong as these cycled samples, although a complicating factor is that pre-
compaction, as caused by pre-testing, could by itself be expected to increase
strength.

It is interesting to note that by the end of the triaxial portion of
these tests the exuded pore fluid volume begins to better agree with the
strain transducer measurements (Figures 9 and 11). At some point during
triaxial testing, samples apparently approached complete drainage. This is
further supported by the data in Figure 22 which show that the drained samples
were significantly stiffer during the triaxial portion of the experiment than

the undrained samples. Whether this drainage occurred completely enough and




soon enough to provide a true fully-drained strength measurement is, however,

still somewhat uncertain.

3.5 Permeability Measurements

Permeability measurements were made on two untested and two cycled sam-
ples at confining pressures between 13.8 bars and 483 bars (see Table 7).
Pore pressure was maintained at 6.9 bars throughout. Figures 24 and 25 com-
pare the previously untested sample permeability with the cycled sample perme-
ability as functions of confining stress.
Table 8

Permeability Determinations Showing Number of Tests

Test Type No. of Tests
Untested Samples 2
Cycled Samples 2

In both cases, permeability of the previously untested sample was about
one microdarcy. Samples from tube 2-25 show an approximate doubling of pe- me-
ability after being uniaxially strained, whereas samples from tube 1-18 show
an order of magnitude increase. A large amount of permeability increase is
therefore associated with test-caused damage. With increasing effective con-
fining stress, the permeability decreased for both previously untested and
stress cycled samples. At approximately % kbar effective stress, the measured

permeability for both is equal and less than 0.2 pdarcies.

3.6 Strain Rate Tests

This section of the testing program was conducted in three parts. First,
a series of unconfined tests were run. Strain rates were varied from 10-5

sec-! to 10-! sec-!., Two tests were run at each strain rate for a total of 10

tests.
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Second, a series of uniaxial strain tests were run at rates of 10-5 sec-!
to 10-3 sec-!. Three tests were conducted at each strain rate for a total of
9 tests.

Third, a series of triaxial compression tests were run at a confining

- pressure of 0.5 kbars. The strain rates varied from 10-5 sec-! to 10-3 sec-!,

with one test at each strain rate.

The entire test matrix is summarized in Table 8.

Table ©

Strain Rate Tests Showing Number of Tes:s

Test Type 10-° 10-%* 10-° 10-¢ 10-1
Unconfined Compression 2 2 2 2 2
Uniaxial Strain Undrained 3 3 3
Triaxial Compression Undrained 1 1 1 {

Reviewing all the strength data shown in Figure 26 and the stress-strain
data shown in Figures 27, 28 and 29, no evident trends with changing strain-

rate are observed. Individual test data are found in Appendix D.

3.7 Special Drainage Test

This test was designed to allow significantly more drainage time (30
minutes up to 48 hours) than for the semi-drained tests (5 minutes). Data
from this test are presented in Figure 30 in which volume strains as measured
by the strain transducers and as measured by the exuded pore fluid are com-
pared. Also, in Figures 31 and 32 the volume produced from the sample as a
function of time is presented for each equilibration period. Table 9 presents
the incremental and accumulated volume strains and the approximate time dura-

tion for each interval of the experiment.
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TABLE 10
HYDROSTATIC COMPRESSION TEST
DNA 2C~4 GROUT
PORE PRESSURE = 10 BARS

Incremental Volume Incremental Volume Interval
Mean Strain, X (by Accumulated Strain, X% (by Accumulated | Duration
- Interval | Stress (kb) water volume) Total Strain | strain transducers) | Total Strain| (approx.)
A-8 1.3 0.26 0.26 +1.72 1.72 *
B-C 1.3 0.58 0.84 +0.36 2.08 30 min
c-0 0 0.0 0.84 -1.32 0.76 x
D-€ 2.7 0.16 1.00 +2.84 3.60 .
E-F 2.7 C.60 1.60 +0.38 3.98 30 min
F-G 0 0.0 1.60 -2.22 1.76 x
G-H 0 0.54 2.14 +0.30 2.06 20 min
H-1 3.8 0.16 2.30 +3.60 5.66 x
I-J 3.8 0.34 2.64 +0.16 5.82 30 min
J=K 1.2 0.02 2.66 -1.88 3.94 *
K-L 1.2 0.50 3.16 +0.38 4.33 1 hour
L-M 0.3 0.02 3.18 -0.56 3.76 *
M-N 0.3 1.02 4.20 +(0.84 4.60 48 hours
N-Q 0 0 4.20 0 4.60 x
0-p 1.3 0.04 4.24 +1.28 5.88 *
P-Q 1.3 0.08 4.32 +0.20 6.08 30 min
Q-R 0 ~0.02 4.30 -1.18 4.90 x
R-S 2.7 +0.02 4.32 +2.38 7.28 *
S-T 2.7 0.12 4.34 +0.16 7.44 30 min
T-u 0 0 4.44 -2.08 5.36 *
U-v 3.8 0.08 4.52 +2.92 8.28 .*
V-W 3.8 0.10 4.62 +0.06 8.34 30 min
w-X 0 0 4.62 -2.56 5.78 x

*Loading and unloading increments were approximately 10 minutes in duration.

From Figure 30 it is evident that despite the significantly longer equil-
ibration times, complete drainage is still not always reached during interme-
diate cycles. For example, had there been complete drainage at 4 kbars, the
two strain measurement methods would have agreed and both would be Tocated to
the right of point "I" as measured by the strain transducers. That this is
true is demonstrated by point "N" which was measured after 48 hours of equil-
ibration time. Here both strain measurements agree within experimental error,
and it appears that full drainage had occurred.

It appears that given enough time, complete drainage does occur and the
two strain measurement methods agree. Thus, it should be possible to estimate
the final strain at each pressure increment using the volume produced versus
time data and an appropriate mathematical analysis. Such an analysis using a

diffusion model and certain simplifying assumptions has identified complexi-
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ties that must be included in the final analysis: First, the permeability is
strongly dependent on effective stress. This must be accounted for because
effective stress changes dramatically with drainage time, especially at the
lower confining pressures, as can be inferred from Figures 31 and 32. Second
are the effective stress increases, step-wise and incremental. This causes
superimposed decays, each with a different time constant, which also must be

accounted for.
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4. SUMMARY AND CONCLUSIONS

The casting and curing process adopted produces 2C-4 grout with consis-
tent properties.

Refrigerating the samples at 14 days of cure slows the curing process
sufficiently to allow testing to continue on refrigerated samples after
14 days and yet maintain 14 day properties.

Permeability to water is approximately 1 pdarcy at an effective confining
stress of 6.9 bars. With increased effective confining stress to % kbar
permeability diminishes to less than 0.2 pdarcies. Subjecting samples to
a uniaxial strain test to 4 kbars dramatically increases permeability at
6.9 bars effective confining stress. As effective confining stress in-
creases to % kbar, however, permeability again decreases to its origin-
ally low value of less than 0.2 pdarcies.

"Drained" hydrostatic compression tests were only "semi-drained" because
of the long drainage times required for the low-permeability material.
The special drained test showed that complete drainage will occur in less
than 48 hours at 0.3 kbars confining pressure. Further, it should be
possible to estimate the drained behavior. These estimates are pending
the application of the appropriate analytical technique.

At confining pressures below 2 kbars cycled samples are significantly
weaker than previously untested samples.

Unjacketed samples are weaker than undrained samples at 4 kbars confining
stress. The true drained strength of 2C-4 grout at 4 kbars confining
stress has an approximate lower bound of 0.30 kbars which is the measured
strength of the drained uncycled samples, and an approximate upper bound
of 0.42 kbars which is the measured strength of the drained cycled sam-

ples.




. Within the resolution of these experiments, there are no perceptible

strain rate effects for uniaxial strain tests and triaxial compression
tests conducted at strain rates between 10-3 sec-! and 10-3 sec-! and for

unconfined compression tests conducted at strain rates between 10-5 sec-!

and 10-! sec-1.
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The symbols and equations used for the measured and calculated physical

properties are as follows:

*pw = in-situ bulk density (wet or "as-received" density)(gm/cm?)
*p = grain density (density of solids)(gm/cm3)

= density of water (gm/cm3)

*w = moisture content (percent by wet weight)

= dry bulk density after oven drying (gm/cm3)
N, = total porosity (percent of total rock volume)
S = degree of saturation (percent of void volume)

V. = air void content (percent of total rock volume)

Equations

P4~ Py 1 100

Pq
n, = 100 x 1 - =%
p
g
S_ =100 _ff_f_fzz__
rT T X g X PH,0)

Vo = 100 x [1+ pg (1 - 1/pg) - pw]

*Measured parameters.
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IV. COAL TAR EPOXY




Introduction

Three series'of tests were run on samples of coal tar epoxy (CTE)-pea
gravel mistures, in order to determine their behavior when subjected to ele-
vated stress at room temperature and elevated temperatures and in a steam
atmosphere.

Results of the first test series consist of previously unreported data on
CTE. These include results of room temperature triaxial compression tests
conducted at 0, 1, 2 and 4 kbar confining pressure, and uniaxial strain tests
conducted to 4 kbar confining pressure.

The second and third test series have been reported previously in the
form of letter reports. Results of unconfined compression tests conducted at
room temperature and a sample freated at 100°C were included in a letter to J.
LaComb dated March 30, 1981. Results of CTE creep experiments were submitted

in the letter to J. LaComb dated October 1, 1981. For completeness, results

of these two test series are included in this section.
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Triaxial Compression and Unjaxial Strain Tests at Room Temperature

In order to develop a better understanding of the mechanical behavior of
coal tar epoxy (CTE)-pea gravel mixtures, a series of triaxial and uniaxial
strain tests were performed. Triaxial compression tests at 0, 2 and 4 kbars
confining pressure were conducted, as well as uniaxial compression tests to 4
kkbars. These tests were all at room temperature.

Figures 1 to 7b are plots of strain as a function of stress difference,
and strain as a function of confining pressure for the triaxial compression
tests. Figures 8a to 9b show volume strain versus the mean normal stress, and
stress difference versus confining pressure for the uniaxial compression

tests.

The CTE material showed permanent compactions of approximately 0.5% and

1.0% by volume after the uniaxial tests.
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Unconfined Compression Test at Room Temperature and 100°C

Figure 10 is a plot comparing the unconfined compressive strengths at
room temperature and ~100°C. In the elevated temperature test the prepared
CTE sample was immersed in boiling water (96°C in Salt Lake City) for approxi-
mately 24 hours and was then quickly instrumented and tested to failure in
compression. As can be seen, the relative unconfined compressive strengths of
the samples tested at room and elevated temperatures differ by more than an

order of magnitude.
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COM. TAR EPOXY

107¢ byevess STRAN AATY

AT ROOM TEMPERATURS & 100° C
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160° C FOR APPRDE. 24 MRS,
i I 1

Figure 10. Unconfined Compression of CTE with Pea
Gravel at Room Temperature and 100°C.




Creep Experiments at ~100°C

The creep.response of CTE-pea gravel mixtures at elevated temperatures
was also investigated. In these series of tests, 2 and 4 inch long samples of
2 inch diameter CTE material were mounted in the apparatus shown diagramatic-
ally in Figure 11. This apparatus consisted of a free hanging vertical rod
fastened at its upper end to a support structure. Dead weights, a platten and
the sample were all subsequently placed coaxially on the rod. A 0.57 in2
washer and nut supported the components. An open ended cylinder mounted on
the underside of the platten encased the CTE sample material. This cylinder
had vent holes drilled near the upper end to allow vertical steam circulation.
The washer area and the dead weights combined to produce a compressive stress
of 6.9 bars on the sample.

Saturated steam (~96°C) was allowed to contact the side and end surfaces
of the CTE sample. The creeb displacement of the sample was measured by a
dial gage (having a resolution of 0.001 inches) indicating the platen posi-
tion. The time displacement data were collected for periods of up to 56
hours. The displacement as a function of time (displacement being plotted
instead of strain due to stress field inhomogeneities) for the four samples
tested are shown in Figure 12. The general characteristics of primary and
secondary creep are evident in the samples. There are, however, significant
variances in the curves. The most probable cause of these variances is the
effect of the full-sized pea gravel filler on a small sample. A larger sample
would tend to minimize the inhomogeneous effects of the filler. And in fact

the two 4 inch long samples did exhibit the most consistent response.
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